5,463,696

37
Long fMinStroke, fMaxStroke

These two fields are hints to the controller to help it
efficiently determine the value of nStrokes for a unit that is
a parent of this unit in the future. Note that nStrokes does not
necessary equal maxStroke-minStroke.

Methods

static TUnit *Make(TDomain *domain, ULong type,
TArray *areaList);

Make creates a new TUnit. The domain parameter indi-
cates the domain that actually created the unit. If the unit was
not created by a domain, this field may be set to 0. The type
parameter is placed in the type field of the unit, and the
areaList parameter is placed in the fareal ist field of the unit.
This is not a virtual method, so subclasses of TUnit are free
to redefine the interface to their Make methods.

void IUnit(TDomain *domain, ULong type, TArray
*areal ist);

IUnit is called by Make to initialize the unit. Its param-
eters are the same as those passed to Make. IUnit should be
called by the initialize methods of subclasses of TUnit. This
is not a virtual method, so subclasses of TUnit are free to
redefine the interface to their initialize methods.

virtual void Dispose(void);

This method is called to dispose of the TUnit object.
Subclasses will only need to override this method if they
allocate data structure of their own that is stored directly in
the unit. Once an object that is subclassed from TUnit has
been put into the recognition system (using NewGroup or
NewClassification), you should never call this method
directly. Instead, you should call ClaimUnits(unit), and the
unit will be disposed of at a safe time.

virtual void IDispose(void);

virtual ULong SizelnBytes(void);

This method is for debugging purposes only. It should
return the size, in bytes occupied by this unit, all of its owned
structures, including its interpretations, but not including its
subunits. A subclass of TUnit only needs to override this
method if it stores allocated structures in the unit itself.

virtual void Clone(void);

This method causes the reference count in the unit to be
incremented. This method should never need to be over-
written. Every call to Clone must be balanced by a call to
Dispose, or the object will never be disposed.

virtual flag Release(void);

This method should be called by each Dispose method to
determine whether or not to actually dispose of the object.
It returns true if the object should be disposed, otherwise the
Dispose method can simply return.

virtual ULong SubCount(void);

If the unit is a TUnit, SubCount always returns 0. If the
unit is a subclass of TSIUnit, then SubCount returns the
number of elements in the subs array.

virtual ULong InterpretationCount(void);

If the unit is a TUnit, this method returns 0. If the unit is
a subclass of TSIUnit, then it returns the number of inter-
pretations in the interpretations array. If your subclass of
TUnit stores a single interpretation within the unit itself,
then it should probably return 1 and implement all the
appropriate interpretation methods.

virtual ULong GetBestInterpretation(void);

This method searches through the list of interpretations

10

20

25

35

40

45

50

55

65

38

and returns the index of the one with the best score. You
probably won’t need to override this method.

virtual void Dump(TMsg *msg);

Dump is used for debugging purposes; see the TMsg class
for a description of its use.

virtual void DumpName(TMsg *msg);

DumpName is used for debugging purposes; see the
TMsg class for a description of its use.

virtual void ClaimUnit(TUnitList *);

ClaimUnit is called by the TController::ClaimUnits
method; it shouldn’t need to be called directly. If the unit is
a TSIUnit, ClaimUnit calls itself recursively on all of its
subunits, and then marks itself as claimed (setting the
claimUnit flag in the flags field). If the unit is a TUnit, then
it simply marks itself as claimed.

An application should claim a unit only if accepts an
interpretation of the unit that is passed to it by the Arbiter.
It should first extract all desired information from the unit or
its interpretation, and then call ClaimUnits. Once ClaimU-
nits has been called on a unit, the unit is volatile and may
disappear.

virtual void Invalidate(void);

Invalidate sets the invalid unit flag in the unit’s flags field.
A recognizer might call Invalidate after deciding that a
particular grouping that it had previously proposed has
become invalid. For instance if a single vertical stroke is
categorized as a character unit with interpretation ‘T’, and a
subsequent stroke crosses it, the recognizer might invalidate
the ‘T’ unit and create a ‘t’ unit instead.

The next set of methods are just for field access. They are not
virtual functions so they can’t be overwritten.

TDomain *GetDomain(void);

Call GetDomain to obtain a pointer to the domain that
created the TSIUnit.

ULong GetDelay(void):

void SetDelay(ULong);

ULong GetType(void);

void SetType(ULong);

ULong GetPriority(void);

void SetPriority(ULong priority);

ULong GetTime(void)

void SetTime(ULong);

TArray *GetAreas(void);

void SetAreas(TArray *);

void SetBBox(rectangle *r);

rectangle *GetBBox(rectangle *r);

Long CheckOverlap(TUnit *a, TUnit *b);// return overlap
status of two units

Long CountStrokes(TUnit *a);

Long CountOverlap(TUnit *a, TUnit *b);

void MarkStrokes(TUnit *a, char *ap, Long min);

While this invention has been described in terms of
several preferred embodiments, it is contemplated that alter-
ations, modifications and permutations thereof will become
apparent to those skilled in the art upon a reading of the
specification and study of the drawings. Furthermore, certain
terminology has been used for the purposes of descriptive
clarity, and not to limit of the present invention. It is
therefore intended that the following appended claims
include all such alterations, modifications and permutations
as fall within the true spirit and scope of the present
invention.

We claim:

1. A system for recognizing user input to a computer from
a user input device, comprising:

input means for receiving user input data in the form of a

